Hu-PBMC 小鼠是将新鲜的人 PBMCs 经尾静脉或腹腔移植入免疫缺陷小鼠M-NSG体内,以重建人的 T
细胞并维持其免疫功能,是目前成本效益高且易于操作的人源化小鼠模型,是研究 T 细胞相关疗法的理想模型。同时该模型中还可检测到少量的 B 细胞、髓系细胞或其他免疫细胞。
表型分析

Fig. Flow analysis of peripheral blood lymphocyte subpopulations in the Hu-PBMC model. Human PBMCS (5E6) was injected intravenously into M-NSG mice (female, 6 weeks old, n=6). Blood was taken at different time points after implantation of humanPBMCS for flow cytometric analysis.
药效案例

Fig. In vivo pharmacodynamic studies using the Hu-PBMC model of intestinal cancer (HT29).

Fig. In vivo efficacy studies using the human small cell lung cancer (SHP-77) Hu-PBMC model.

Fig. In vivo efficacy studies using the human myeloma (H929) Hu-PBMC model.

Fig. In vivo efficacy study using the human kidney cancer (A498) Hu-PBMC model.

Fig. In vivo CAR-NK efficacy study using the human colorectal cancer (LoVo) Hu-PBMC model.
Hu-HSC 小鼠是将新生免疫缺陷小鼠 M-NSG 经亚致死剂量辐照处理后,再将新鲜的人 CD34+ HSC
经尾静脉或者骨髓腔注射入免疫缺陷小鼠体内。
该模型的优势在于 Hu-HSC 可发育成包括 T 细胞、B 细胞、NK 细胞、MDSCs 和其他谱系阴性细胞在内的免疫细胞,且对小鼠宿主具有免疫耐受,通常不会发生
GvHD,模型稳定期长,肿瘤免疫治疗研究中显示出巨大的应用前景。
表型分析

Fig1. Flow analysis of peripheral blood lymphocyte subpopulations in the Hu-HSC model. Human HSC (1.5E5) was injected intravenously into M-NSG mice (female and male).

Fig2. Flow analysis of peripheral blood lymphocyte subpopulations in Hu-HSC models from different donor sources.
药效案例

Fig. In vivo efficacy studies using the human breast cancer (MDA-MB-231) Hu-HSC model.